On k-Root Square Mean Labeling of Graphs

Aswathy $\mathbf{H}^{\mathbf{1}}$, Sandhya S. $\mathbf{S}^{\mathbf{2}}$

Author 1: Research Scholar
Sree Ayyappa College for Women, Chunkankadai.
Author 2: Assistant Professor, Department of Mathematics,
Sree Ayyappa College for Women, Chunkankadai.
[Affiliated to ManonmaniamSundararanar University,
Abishekapatti - Tirunelveli - 627012, Tamilnadu, India]
E mail : aswathyrh22@ gmail.com ${ }^{1}$
sssandhya2009@ gmail.com²

Abstract

A graph $G=(V, E)$ with p vertices and q edges is said to be a Root Square Mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots \ldots \ldots . q+1$ in such a way that when each edge $e=u v$ is labeled with $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rfloor$, then the resulting edge labels are distinct. In this

 case f is called a Root Square Mean labeling of G. In this paper we investigate the K- Root Square Mean labeling of some Graphs.Key words: Labeling, Root Square Mean Labeling, Path, Twig, Triangular Ladder.

AMS Subject Classification : 05C78

Introduction

The graph considered here will be finite, undirected and simple. The vertex set is denoted by $\mathrm{V}(\mathrm{G})$ and the edge set is denoted by $\mathrm{E}(\mathrm{G})$. For all detailed survey of graph labelling, we refer to Galian [1]. For all other standard terminology and notations we follow Harary[2]. S.S.Sandhya, S.Somasundaram and S. Anusa introduced the concept of Root Square Mean labeling of graphs in [3]. In this paper we investigate the k- Root Square Mean labeling of some Graphs.

Definition 1.1 : A graph $G=(V, E)$ with p vertices and q edges is said to be a Root Square Mean graph if it is possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots \ldots \ldots . q^{\prime}+1$ in such a way that when each edge $\mathrm{e}=\mathrm{uv}$ is labeled with $\mathrm{f}(\mathrm{e}=\mathrm{uv})=\left\lceil\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rfloor$, then the edge labels are distinct. In this case, f is called a Root Square Mean labeling of G.

Definition 1.2 : A function f is called K- Root Square Mean labeling of a graph $G=(V, E)$ with p vertices and q edges if $f: V(G) \rightarrow\{k, k+1, \ldots, k+q\}$ be an injective function and the induced edge labeling $f(e=u v)$ be defined by $f(e=u v)$ be defined by $f(e)=\left\lceil\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(v)^{2}}{2}}\right\rfloor$ with distinct edge labels.

Theorem 1.3 : Path P_{n} is a K- Root square Mean graph for all k and $n \geq 2$.
Proof: Let $V\left(P_{n}\right)=v_{i} ; 1 \leq i \leq n$ and $E\left(P_{n}\right)=\left\{e_{i}=\left\{v_{i} v_{i+1}\right\} ; 1 \leq i \leq n-1\right\}$
Define a function $f: V\left(P_{n}\right) \rightarrow\{k, k+1, \ldots, k+q\}$ by
$f\left(v_{i}\right)=K+i-1 ; 1 \leq i \leq n$
The edge labels are $f\left(v_{i} v_{i+1}\right)=K+i-1 ; 1 \leq i \leq n-1$.
The function f provides k - Root square mean labeling of the graphs.
Hence P_{n} is a k- Root square Mean graph.
Example 1.4: 100 -Root Square Mean labeling of P_{5} is give below.

Figure 1
Theorem 1.5 : Twig graph is k- Root square mean graph for all k and $n \geq 3$

Proof : Let G be a Twig graph.
Let $V(G)=\left\{v_{i} ; 1 \leq i \leq n ; u_{i} ; 1 \leq i \leq n-2\right.$ and $\left.w_{i} ; 1 \leq i \leq n-1\right\}$
$E(G)=\left\{u_{i} v_{i}, v_{i} w_{i} ; 1 \leq i \leq n-2\right\} \cup\left\{v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}$
Define a function $f: V(G) \rightarrow\{k, k+2, k+3, \ldots, k+q\}$ by
$f\left(v_{i}\right)=k f\left\{v_{i+2}\right\}=k+1+3 i ; 1 \leq i \leq n-2$.
$f\left(w_{i}\right)=k+3 i ; 1 \leq i \leq n-2$.
$f\left(u_{i}\right)=k+3 i-1 ; 1 \leq i \leq n-2$.

Then the induced edge labels are
$f\left(v_{i} v_{i+1}\right)=k+3 i-3 ; 1 \leq i \leq n-1$.
$f\left(v_{i+1} w_{i}\right)=k+3 i-1 ; 1 \leq i \leq n-2$.
$f\left(v_{i+1} u_{i}\right)=k+3 i-2 ; 1 \leq i \leq n-2$.
The function f provides k - Root square Mean labeling of the graph.
Hence twig is a k - Root Square mean graph.
Example 1.6: 200-Root square mean labeling of twig graph is shown below.

Figure 2

Theorem 1.7 :

The Triangular Ladder $T L_{n}$ is k- Root Square mean graph for all k and $n \geq 2$.
Proof : Let $T L_{n}$ be a Triangular ladder. The graph $T L_{n}$ contains two paths of length n such as $v_{1} v_{2} \ldots v_{2}$ and $u_{1} u_{2} \ldots u_{n}$ join $v_{i} u_{i+1} ; 1 \leq i \leq n-1$

The edge set as $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, v_{i} u_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\}$
$T L_{n}$ has $4 \mathrm{n}-3$ edges
The labeling pattern of $T L_{n}$ is

Figure 3
Define a function $f: V\left(T L_{n}\right) \rightarrow\{K, K+1, \ldots, K+q\}$ by
$f\left(v_{i+1}\right)=k+4 i+1 ; 1 \leq i \leq n-1$.
$f\left(u_{1}\right)=k$
$f\left(u_{i+1}\right)=k+4 i-1 ; 1 \leq i \leq n-1$
The induced edge labels are
$f\left(u_{i} u_{i+1}\right)=k+4 i-3 ; 1 \leq i \leq n-1$
$f\left(v_{i} v_{i+1}\right)=k+4 i-1 ; 1 \leq i \leq n-1$.
$f\left(u_{i} v_{i}\right)=k+4 i-4 \quad ; 1 \leq i \leq n$
$f\left(v_{i} u_{i+1}\right)=k+4 i-2 ; 1 \leq i \leq n-1$.
The function f provides k - Root square mean labeling of the graphs.
Hence $T L_{n}$ is a k- Root square Mean graph.

Example 1.8 : 500-Root square mean labeling of $T L_{5}$ is shown below.

Figure 4
Theorem 1.9: $L_{n} \odot K_{1}$ is k- Root square mean graph for all k and $n \geq 2$
Proof: Labeling pattern of $L_{n} \odot K_{1}$ is given below

Figure 5
Let $V\left(L_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}, x_{i}, w_{i} ; 1 \leq i \leq n-1\right\}$ and

$$
E\left(L_{n} \odot K_{1}\right)=\left\{u_{i} v_{i}, u_{i} w_{i}, v_{i} x_{i} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}
$$

Define a function $f: V\left(L_{n} \odot K_{1}\right)=\{k, k+1, \ldots, k+q\}$ by

$$
\begin{array}{ll}
f\left(u_{i}\right)=k+5 i-4 & ; 1 \leq i \leq n \\
f\left(v_{i}\right)=k+5 i-3 & ; 1 \leq i \leq n . \\
f\left(w_{1}\right)=k & \\
f\left(w_{i+1}\right)=k+5 i & ; 1 \leq i \leq n-1 . \\
f\left(x_{i}\right)=k+5 i-2 & ; 1 \leq i \leq n .
\end{array}
$$

Then the edge labels are
$f\left(u_{i} u_{i+1}\right)=k+5 i-2 ; 1 \leq i \leq n-1$
$f\left(v_{i} v_{i+1}\right)=k+5 i-1 ; 1 \leq i \leq n-1$
$f\left(u_{i} v_{i}\right)=k+5 i-4 ; 1 \leq i \leq n$
$f\left(u_{i} w_{i}\right)=k+5 i-5 ; 1 \leq i \leq n$
$f\left(u_{i} x_{i}\right)=k+5 i-3 ; 1 \leq i \leq n$
The function f provides k - Root square mean labeling .
Hence $L_{n} \odot K_{1}$ is a k- Root square mean graph.
Example 1.10: 600 -Root square mean labeling of $L_{n} \odot K_{1}$ is shown below

Figure 6
Remarks 1.11: If $n>k+5, k_{n, n}$ is not a k-Root square mean graph.
Remarks 1.12: If $n>k+3, k_{n, n}$ is not a k-Root square mean graph.
Remarks 1.13 : K_{n-e} is a k-Root square mean graph if $n=k+3 \& k+4$.

References

[1] Galian,J.A.(2012) A Dynamic Survey of Graph Labeling .The Electronic Journal of combinatories.
[2] Harary,F.(1988)Graph Theory, Narosa Publishing House Reading, New Delhi.
[3] S.S.Sandhya, S.Somasundaram, S.Anusa, Root Square Mean Labeling of Graphs International Journal of Contemporary Mathematical Sciences, Vol.9,2014,no.14, 667-676.
[4] Sandhya,S.S, Somasundaram,S. Anusa, S (2014)Some New Results on Root Square Mean Labeling ,International Journal of Mathematical Archive, 5,130-135.
[5] Sandhya,S.S, Somasundaram,S. Anusa, S. (2015) Root Square Mean Labeling of Some More Disconnected Graphs, InternationalMathematical Forum, 10, 25-34.
[6] Sandhya,S.S, Somasundaram,S. Anusa, S. (2015) Root Square Mean Labeling of Subdivision of Some Graphs, Globel Journal of Theoretical and Applied Mathematics Sciences, 5, 1-11.

